On factorization of p-adic meromorphic functions
نویسندگان
چکیده
منابع مشابه
RATIONAL DECOMPOSITIONS OF p-ADIC MEROMORPHIC FUNCTIONS
Let K be a non archimedean algebraically closed field of characteristic π, complete for its ultrametric absolute value. In a recent paper by Escassut and Yang ([6]) polynomial decompositions P (f) = Q(g) for meromorphic functions f , g on K (resp. in a disk d(0, r−) ⊂ K) have been considered, and for a class of polynomials P , Q, estimates for the Nevanlinna function T (ρ, f) have been derived....
متن کاملFactorization of p-adic Rankin L-series
We prove that the p-adic L-series of the tensor square of a p-ordinary modular form factors as the product of the symmetric square p-adic L-series of the form and a Kubota– Leopoldt p-adic L-series. This establishes a generalization of a conjecture of Citro. Greenberg’s exceptional zero conjecture for the adjoint follows as a corollary of our theorem. Our method of proof follows that of Gross, ...
متن کاملOn p-adic Artin L-functions II
Let p be a prime. Iwasawa’s famous conjecture relating Kubota-Leopoldt p-adic L-functions to the structure of certain Galois groups has been proven by Mazur and Wiles in [10]. Wiles later proved a far-reaching generalization involving p-adic L-functions for Hecke characters of finite order for a totally real number field in [14]. As we discussed in [5], an analogue of Iwasawa’s conjecture for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2020
ISSN: 0019-3577
DOI: 10.1016/j.indag.2020.07.002